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ABSTRACT 
Here we present an analysis of the experimental free 

dynamics of beam/pendulum configuration. We apply the 
method of Proper Orthogonal Decomposition. The method 
identifies the dominant dynamics. Depending on the level of 
energy a motion is initiated, the interaction dynamics bear 
distinct signatures of the slow reduced dynamics and distinct 
signatures of the interaction dynamics. 

INTRODUCTION 
The dynamics of coupled structural systems that consist of 

linear elastic continua coupled to nonlinear oscillators or other 
nonlinear continua is of interest to the structural engineering 
community for at least two reasons: First, structures and 
machines in applications are by design geometrically 
complicated configurations of linear and nonlinear structural 
elements. And second, attachment of nonlinear oscillators or 
layers of nonlinear material can modify in profound ways the 
resonant dynamics of large-scale structures. In designing 
geometrically complicated structures such as an aircraft 
fuselage or a ship to avoid interaction resonant dynamics 
between the main structure and the attached machinery is a 
basic issue. Depending on the strength of coupling between 
primary and secondary substructures, the dynamics of coupled 
systems may be as simple as periodic in time and space and as 
complex as chaotic in both space and time. A measure of 
complexity is the number of active degrees-of-freedom that 
supports a motion. The basic issue is to identify these degrees- 
of-freedom and relate them to normal modes of oscillation. An 
understanding in depth could be obtained if the complexity is 
related to the complexity of the dynamics of the uncoupled 
substructures. 

A way to compute and understand complexity of coupled 
linear/nonlinear systems is to consider first the degree of 
complexity for the case of weak coupling among its various 
substructures. In general, a geometrically complicated coupled 
structure is an assembly of primary and secondary 
substructures. For instance a soft/stiff-coupled system is 
composed of substructures of low natural frequencies 
(secondary) and substructures of high natural frequencies 
(primary). In this case, we have weak coupling. 
This approach allows the usage of ideas from geometric 
singular perturbation Üieory to relate the reduced dynamics to 
the dynamics of the uncoupled substructures. In particular, for 
sufficiently weak coupling, the free dynamics of coupled 
systems can be separated into slow and fest dynamics. 
The dynamics of a coupled system with weak coupling are 
governed by the slow dynamics, which manifests itself as a 
number of normal modes of oscillations or in phase space as 
two-dimensional invariant manifolds. Transversely to this 
subspace of slow dynamics reside the fast dynamics. Dynamics 
that are not restricted in the fast and slow subspaces are 
termed interaction dynamics. Interaction dynamics are 
developed due to bifurcation mechanisms that destabilize the 
slow and fast reduced dynamics. Such a mechanisms is global 
internal resonance that takes place at high energy levels. 

The spatio-temporal complexity of the dynamics depends on 
the strength of coupling between the subsystems and the 
complexity of the dynamics of the uncoupled subsystems. The 
complexity has to do with the new dynamics that are developed 
due to instabilities of the reduced slow and fast dynamics. 
Towards developing a systematic understanding of the 
dynamics coupled linear/nonlinear systems, we have 
considered the dynamics of a beam/pendulum coupled system. 
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This is a prototype for coupled linear/nonlinear structures. 
Aspects of its dynamics have been studied in detail 
numerically and experimentally by combining the methods of 
geometric singular perturbation and the computational method 
of proper orthogonal decomposition (POD) or K-L. In this 
work we determine by the POD method the degrees-of-freedom 
that support the interaction free dynamics of the 

beam/pcndulum-coupled system. 

Table 1 Initial conditions and coupling parameters 

Figure 1 Experimental set-up of the beam/pendulum 
configuration. 

MEASUREMENT OF EXPERIMENTAL DYNAMICS 
A coupled system composed of a two-branched 

cantilevercd aluminum beam supporting at its free end a 
pendulum, shown in Figure 1, was build and tested. The 
length, width, and thickness of the beam were respectively 
660.40 mm, 25.40 mm, and 3.175 mm. The length and mass 
of the pendulum were varied to achieve coupling strength of 
various levels since the coupling is determined by the freq 

uency ratio and beam ratio defined respectively by 

P =3 
G),. 

where  6)^ and CO, <h are the linear natural frequency of the 

uncoupled pendulum and the fundamental frequency of the 
beam. Moreover, Mp andAf,, are the corresponding masses. 

A typical experiment was performed as follows: The pendulum 
mass was released from a specified initial angular position 
while the beam was at rest. After the elapse of a time interval 
of three minutes, acceleration data at seven locations of the 
beam were recorded.. Table 1 shows the corresponding 
coupling parameters and initial conditions for a set of four 
experiments. Table 2 gives the locations and sensitivities of the 
accclerometer sensors 

Beam/Pendulum Configuration 
L, = 660.40mm , Mb = 365gr, CO,, = 28.525 radls 

Experiment Initial conditions Coupling 

No. % V ß 
1 Tt/ 

/2 
0.2025 0.050 

2 

3 
4 

n/ 
/2 
K 

impact at 0O = n 

0.2100 

0.2100 
0.2100 

0.100 

0.100 
0.100 

Table 2 Spatial arrangement of accelerometer sensors 

Accelerometer sensors 

Number Location/beam length Sensitivity (mV/g ) 

1 0.1763 09.84 

2 0.3110 09.72 

3 0.4443 96.60 

4 0.5790 98.10 

5 0.7138 09.80 

6 0.8471 10.15 

7 0.9773 10.12 

Notice in Figure 1 that the beam consists of two branches 
coupled by a pin about which the pendulum rotates. The 
accelerometers are attached along one branch. This clearly 
disturbs the symmetry of the structure. This would create some 
discrepancies in comparing the experimental results with the 
analysis of the idealized beam/pendulum problem. The 
identification power of the POD method resides into the fact 
that it can detect these differences. In fact, this is the case in 
this experiment. 

A way to compute how complexity evolves is to initiate 
motions at different energy levels and analyze them by the 
method of proper orthogonal decomposition as discussed 
below. 

The figures below show the free o-temporal free response 
of the beam as measured by the accelerometers. 
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Figure 2 Experiment No. 1 
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Figure 3 Experiment No. 2 

Although the initial conditions are the same and the difference 
in strength of coupling is small, for the behavior seems to quite 
different. In fact, shall see that more degrees of freedom 
support the motion shown in Figures 3,4,5. 

POD ANALYSIS OF THE EXPERIMENTAL DATA 
We arc interested in computing from the experimental 

data the optimum degrees-of-freedom that dominate the free 
dynamics for the experiments listed in Table 2. Processing the 
data by the method of Proper Orthogonal Decomposition 
(POD) or K-L will identify the spatio-temporal characteristics 
of these degrees-of-freedom. It is convenient, to represent the 
experimental time series as a vector: 

Ü(t) = {Wt)(t),W](t),..,W7(t))T,   teftj,]. 

This vector of measurements is written as a fluctuation about a 
its average value, that is, 

T 

tf(0-»(')+(#(')). (#('))-77fJ#(0* 

Its fluctuation will be expanded into proper orthogonal modes: 

»I-I 

This process of measurements is called a Proper Orthogonal 

Decomposition   analysis.   The   constant    A,„ represent   the 

fraction of energy contained in the mode whose amplitude and 

shape are given respectively by the functions Am (t) and <£>„,. 

The set 

gives the spectrum of energy distribution over the POD modes. 
Clearly since it shows the number of active degree-of-freedom, 
it is a very useful quantity of a motion. 

i.o"'     lon.u 
lSR.It 

Figure 4 Experiment No. 3 
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Figure 5 Experiment No. 4 

POD Analysis of Noise. Since we deal with experimental data 
it is useful in evaluating the results of the POD analysis to 
perform a POD analysis of a spatio-temporal record of noise 
measurements. The noise signal shown in Figure 6 was 
processed by the POD method. Figure 7a shows that its POD 
spectrum is uniformly distributed over a number of POD 
modes that is equal to the number of site measurements. 
Figures 7b and 7c show respectively the time history and 
frequency spectrum of the amplitude of the first POD mode of 
noise. 
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Figure 6 Spatio-temporal measurement of noise 
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Fig. 7 POD analysis for noise: (a) spectrum, (b) time series 
of first POD mode, (c) FFT of first POD mode. 

The POD analysis of the noise database will help interpret the 
results    of   the   POD    analysis    of   the   spatio-temporal 

measurements of the free dynamics of the beam/pendulum 
coupled system. 

Case   A:    u = 0.2025,_ ß = 0.050.   At   sufficiently   weak 

coupling it is possible to have pure slow dynamics. These 
dynamics are slow oscillations and form in phase space a two- 
dimensional invariant manifold, the geometric picture of a 
global nonlinear normal mode. This normal mode is divided 
into the master sub-mode, which is a perturbation of the 
uncoupled pendulum dynamics, and the slaved sub-mode, 
which is associated with the beam substructure. The slow- 
slaved dynamics of the beam substructure have the 
characteristic frequency signature [1]: 

Fs={2^,4ö)/,,6ffl;))-} 

, whereas that of the master slow dynamics is given by: 

Fm={a)l„3col„5cop,-} 

The slaved slow dynamics can destabilize at high energy 
levels. These destabilization mechanics, one of which is a 
global internal resonance [Georgiou et. al. 1999], create the 
interaction dynamics, that is, dynamics qualitatively different 
than small regular perturbations of the dynamics of the 
uncoupled subsystems. 
For experiment No. 1, the value of coupling level is not 
sufficiently small, but sufficiently large for the interaction 
dynamics due to instabilities of the slow dynamics to occur. 
The goal of this experiment is to identify the first signs of 
interaction dynamics at weak coupling. The pendulum is 

released from an angle slightly greater than 7CJ2 radians. 

Data were collected after the elapse of three minutes, sufficient 
time for high frequency transients to die out. The spatio- 
temporal measurement of the beam acceleration is shown in 
Figure 2. Figure 8a reveals that its spectrum is concentrated at 
one mode. The plateau looks similar to that of noise. Indeed, 
all POD modes but the first one are noise. The amplitude 
dynamics of the first mode is shown in Figure 8b whereas it's 
FFT in Figure 8c. We notice how noise free is the time history 
of the single POD mode. The frequency spectrum of the POD 
mode contains not only the fundamental frequency of the beam 
but also lower and higher frequencies, which clearly have 
nothing to do with the natural frequencies of the beam. These 
frequencies are multiples of the pendulum frequency. In fact 
the frequency spectrum of the POD mode turns out to be 

F = {2,4,4.9485,6.1067,6.9489}xfi);> 

This is an interweaving distortion of the frequency signature of 
the slaved slow and master dynamics. The shape of the POD 
mode is shown in Figure 8d. It is identical to the shape the 
beam takes when the system executes pure slow motions. 
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Fig. 8 POD analysis: (a) spectrum, (b) amplitude of first 
mode, (c) FFT of first mode, (d) shape of first mode. 

Case   B:    u =0.2100,/? = 0,100.   To   explore   how   the 

interaction dynamics change as a function of energy level, we 
have performed three experiments at different energy levels at 
a slightly higher value of coupling than in case A. The spatio- 

temporal measurements are shown in Figures... The initial 
conditions are shown in the Table 1. Figure 9 shows the POD 
spectra for these experiments. Now the energy is distributed 
over 2-3 modes. However, one mode dominates. All modes in 
the plateau have very small energy and are noise. 

c 
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u 
«s 

2» 
4) 
C 
Ul 

1E-010 

1 10 
POD mode(m) 

100 

Fig. 9 POD spectrum for experiments 2, 3, and 4. 

Figure 10 shows the frequency spectrum of the first POD 
mode. Here we see how the frequency content changes as the 
energy level in increased. One frequency remains unaffected by 
the energy lever. This frequency is related to the fundamental 
frequency of the beam. It is interesting to see the dramatic 
change the frequency spectrum undergoes as the frequency of 
the pendulum approaches zero or the pendulum performs a 
near heteroclinic motion. However, the shape of this mode 
does not change as we can see in Figure 11 
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Fig. 10 POD analysis of experiment no. 2 
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Fig. 11 Shape of first POD mode 

At sufficiently weak coupling the slow dynamics are 
characterized by a slow invariant manifold or normal mode. 
This mode is described by two POD modes whose beam 
component coincides, contain different energy fractions, with 
the shape of the fundamental mode of the beam. The shape 
here remains almost the same. Thus the question of whether 
the POD mode is somehow related to a normal mode arises 
naturally. 
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Fig. 12 FFT for the second POD mode 

Figure 12 shows the frequency spectrum of the second POD 
mode of all three experiments. They are distributed around a 
low frequency that remains almost the same for energy levels. 
This turns out to approximately twice the natural frequency of 
the pendulum. We that clearly in Figure., for the case of small 
coupling. These modes have almost identical shape as we can 
see in Figure 13. This shape is localized and clearly does not 
resemble to the shapes of the modes of the uncoupled beam. 
This is a product of the interaction. This could be used as 
diagnostic for the structural integrity of the linear structure. 

12 16 
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Fig. 13 Shape of second POD mode 
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Fig. 14 FFT of the third POD mode. 

Figure 14 shows the frequency spectra of the third POD mode. 
For the first experiment, this mode is noise. For the other two 
experiments, the frequency spectra are characterized by a 
frequency, which is almost twice that of the natural frequency 
of the pendulum. These two modes have identical shapes as 
shown in Figure 15. 

0        0.2      0.4      0.6      0.8 
Beam normalized length 

Fig. 15 Shape of the third POD mode. 

DISCUSSION 
The POD processing of experimental dynamics of coupled 

structures is a powerful computational tool. In particular, it can 
be used effectively to process the interaction free dynamics of 
coupled structures. This tool is very useful to understand the 
interaction dynamics of linear/non-linear coupled structures. 
The interactions dynamics have their roots to the transversal 
instabilities of the reduced slow and fast dynamics of the 
weakly coupled system. This study here showed that a distorted 
signature of the slaved slow dynamics is carried by the 
interaction dynamics. This distorted frequency signature is a 
diagnoses of interaction between the main and primary 
substructures of the coupled system. We believe that a 
systematic study of the interaction dynamics as a function of 
coupling will reveal universalities regarding the build up of 
spatial and temporal complexity in high dimensional coupled 
systems whose parts form a complicated configuration. In a 
coming work we compare the finding of this experiment to 
computational results from a simulation of the system 
formulated as a singular perturbation problem. 
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